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Abstract

We study the linear stability of a two-phase heat pipe zone (vapor–liquid counterflow) in a porous medium, either

overlying a superheated vapor zone or underlying a subcooled liquid zone. The effects of gravity, condensation and heat

transfer on the stability of a planar base state are analyzed in the linear stability limit. The rate of growth of unstable

disturbances is expressed in terms of the wave number of the disturbance, and dimensionless numbers, such as the

Rayleigh number and a dimensionless heat flux. As in natural convection under single-phase conditions, a critical

Rayleigh number exists, above which the system is conditionally unstable. The critical number takes values different

than under single-phase conditions and also depends on the applied heat flux. The results find applications to geo-

thermal systems, to enhanced oil recovery using steam injection, as well as to the conditions of the proposed Yucca

Mountain nuclear waste repository. This study complements work of the stability of boiling by Ramesh and Torrance

[J. Fluid Mech. 257 (1993) 289].

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Heat pipes are steady-state, vapor–liquid (typically,

steam-water), countercurrent flow regimes in porous

media driven by the application of heat flux and buoy-

ancy [2]. A heat flux, typically applied at the bottom,

results in the evaporation of the liquid-phase, which

descends due to buoyancy, and in the return upward

flow of vapor, which ascends also due to density differ-

ences. This steady-state motion gives rise to enhanced

heat transfer by convection. Heat pipes in horizontal

systems are also possible, driven by capillarity instead of

gravity. A number of geothermal reservoirs are charac-

terized by heat pipe action, including the Geysers [2],

and the Larderello, Matsukawa and Kawah Kamjang

fields [3].

Heat pipes in homogeneous porous media are char-

acterized by two key features: the temperature is ap-
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proximately constant, equal to the vapor saturation

temperature at the prevailing pressure, and the liquid

saturation is also approximately uniform spatially [4]. In

theory, the spatial extent of a heat pipe can be infinitely

large, under the conditions that the porous medium is

homogeneous and that the temperature decrease due to

the pressure drop is not significant [5–7]. In practice,

viscous, capillary, heat transfer and heterogeneity effects

limit the spatial extent, however. For example, in het-

erogeneous systems, changes in permeability induce

saturation changes, driven by both capillary and gravity

effects [6], and can lead to the termination of the heat

pipe regime. McGuiness [8] explored in detail the factors

that constraint the extent of a heat pipe. Although in

theory heat pipes have a finite extent, due to the inevi-

table temperature drop, this extent is effectively infinite,

in the context of applications, such as geothermal res-

ervoirs.

For a constant heat flux directed against the gravity

vector, there are two possible 1-D steady-states, in the

absence of heat conduction or capillary effects. These are

determined by the solution of the following equation

[4,6,9] (see also schematic of Fig. 1)
ed.
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Nomenclature

Cp specific heat

H thickness of the single-phase region

Ra Rayleigh number for the vapor phase

S saturation eigenfunction

T dimensionless temperature

Tsat saturation temperature

g gravity acceleration

Lv latent heat of vaporization

k permeability of porous medium

ke effective thermal conductivity of the porous

medium

kri relative permeability of phase i
p dimensionless pressure

q heat flux at the bottom boundary

s liquid saturation in two-phase region

t dimensionless time

x, y dimensionless horizontal and vertical co-

ordinates

Greek symbols

D interface location eigenfunction

R saturation eigenfunction

a thermal diffusivity

b thermal expansion coefficient

b1 ratio of heat capacities for rock and vapor

d stationary state interface position

/ porosity

j wave number of the disturbance

l dynamic viscosity

m kinematic viscosity

p pressure eigenfunction

h temperature eigenfunction

q density

r rate of growth of the disturbance

x dimensionless heat flux

Subscripts and superscripts

cr critical

l liquid

min minimum

v vapor

0 base state

1 perturbed state
� dimensional
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Fig. 1. The two possible steady-state saturations of planar heat

pipes (base state). Note the existence of two solutions (if

x < xmax � 0:8) at points A (vapor-dominated) and B (liquid-

dominated). If x > xmax, a steady-state heat pipe does not de-

velop.
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x � qmv
kgLvðql � qvÞ

¼ 1
ml1
vvkrl

þ 1
krv

ð1Þ

Eq. (1) derives from a combination of the steady-state

energy and mass balances, under the condition of zero
net mass flow. Here, x is a dimensionless parameter

expressing the magnitude q of the applied heat flux, m is
kinematic viscosity, k is permeability, g the acceleration

of gravity, Lv the latent heat of vaporization, kriðsÞ the

relative permeability, a function of the liquid saturation

s, and subscripts v and l denote vapor and liquid, re-

spectively. The function in the right-hand side of Eq. (1)

vanishes at the two end-points (residual saturations) of

the saturation (Fig. 1), at which points the relative

permeabilities also vanish.

In graphical terms, the solution of (1) is obtained by

the intersection of the heat flux-saturation curve with

the horizontal line corresponding to a constant heat

flux, x. Provided that the heat flux is smaller than a

critical value, x < xmax (where xmax is equal to about

0.8 in Fig. 1), this results in two solutions (points A and

B in Fig. 1). The two different steady-states correspond

to a vapor-dominated (VD) or to a liquid-dominated

(LD) heat pipe, depending on whether the liquid satu-

ration is small (point A) or large (point B), respectively

(see also schematic in Fig. 2). Above the critical value

xmax, a heat pipe per se, in the sense of a constant sat-

uration region, is not possible. Instead, a two-phase

zone forms of considerably smaller extent and of a

monotonically decreasing saturation profile, governed

by the competition of capillary and gravity forces (see

for example, [6]). We note that in the illustration of Fig.

1, and the results to be presented below, we considered
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Fig. 2. The two possible steady-state configurations: (a) VD heat pipe (point A in Fig. 1) overlying superheated vapor; (b) LD heat

pipe (point B in Fig. 1) underlying subcooled liquid.
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straight-line relative permeabilities with zero residual

saturations.

Whether of the VD or the LD type, the heat pipe

regime is connected to a single-phase flow regime either

above or below it. The sequence of regimes in the two

configurations (VD or LD) was determined by Stubos

et al. [6] by using a small amount of capillarity (which

will be neglected here). In applications where the vapor-

dominated branch exists, a superheated vapor lies below

the two-phase region (Fig. 2a). This situation, often re-

ferred to as ‘‘dry-out’’, requires that superheated con-

ditions exist below the two-phase regime. Such an

application is possible in geothermal systems, as well as

in the high-heat flux scenario for the storage of high-

level nuclear waste in the Yucca Mountain repository. In

the latter, the high-heat flux generated by the decay of

nuclear energy may lead to a dry region surrounding the

emplaced waste, overlying which is a steam-water heat

pipe driven by the percolating rainwater. Conversely, a

liquid-dominated heat pipe develops when (subcooled)

liquid layer overlies the heat pipe region (Fig. 2b).

Typically, this situation is encountered in boiling at low

rates in porous media, where a liquid layer above the

two-phase region is maintained, for example by keeping

its temperature below boiling [1,10]. Field measurements

and observations have confirmed the existence of both

VD and LD regimes in geothermal reservoirs. The

transition between single-phase and two-phase flow re-

gimes depends on a variety of factors, including the

heterogeneity of the medium [6,7,11–13]. We note that

while transitions between single-phase and two-phase

flow regimes are possible, a transition between the two

heat pipe regimes, namely from liquid-dominated to

vapor-dominated (B to A) or vice versa (A to B), is not

possible [3,6].

Regardless of the particular application, the existence

of a heat pipe regime either below an overlying liquid or

above an underlying vapor raises questions of gravita-
tional instability. Consider, for example, the case of a

liquid-dominated heat pipe. Given that the heat pipe is

of a lower (although not by much) density than the

overlying liquid, the possibility of a Rayleigh–Taylor

gravitational instability arises [14]. The onset of natural

convection in the overlying liquid layer, due to its vari-

able temperature, also becomes an important factor.

Recall that in porous media, the onset of natural con-

vection under single-phase flow conditions requires that

the single-phase Rayleigh number defined as

Ra ¼ kHgbDT
am

ð2Þ

exceeds a critical value, which for porous media is

Ramin ¼ 4p2 [15,16]. Here, H is the thickness of the sin-

gle-phase region, across which a temperature difference,

DT , is applied, b is the thermal expansion coefficient and

a is the effective thermal diffusivity. The Rayleigh

number is a dimensionless number expressing the rate of

the destabilizing buoyancy force to the stabilizing vis-

cous force and conductivity.

The stability of liquid-dominated heat pipes was ex-

plored by Ramesh and Torrance [1,10] in the context of

boiling in porous media. They reported the existence of

a critical Rayleigh number above which the 1-D con-

figuration is unstable to 2-D disturbances, and it is a

function of the dimensionless heat flux. The minimum

critical value reported was about half of that for the

onset of natural convection in single-phase flow, sug-

gesting that the underlying two-phase region is desta-

bilizing the flow. As in the single-phase case, stability at

large wavelengths was associated with viscous flow,

while that at smaller wavelengths was due to conduc-

tion. A window of unstable wave numbers was found to

exist for Rayleigh numbers larger than the critical. Bau

and Torrance [9] conducted boiling experiments in a

vertical circular cylinder heated from below and

cooled from above. They observed the formation of a
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two-phase zone underlying a liquid zone. In the absence

of convection, and before the onset of boiling, the

temperature profile in the single-phase region was linear,

as expected when conduction dominates. After boiling,

an almost isothermal region was formed at the satura-

tion temperature, based on which the vertical counter-

current flow of liquid and vapor was concluded. After

exceeding a critical Rayleigh number, convection insta-

bilities developed in both phases.

Vapor-dominated heat pipes find applications in

similar contexts as liquid-dominated heat pipes. A most

interesting visualization was provided recently by

Kneafsy and Pruess [17], who studied the mechanisms of

heat pipes in a fracture, where superheated conditions

were maintained below the two-phase region. Although

that study focused mainly on the mechanics of liquid

flow, many issues related to flow instability and the

possibility that the downwards-percolating liquid may

‘‘penetrate’’ the superheated region, were raised. Pestov

[7] examined the stability of the two-phase region (a

vapor-dominated heat pipe), which she found to be

stable. However, the stability of the combined system,

with a vapor-dominated heat pipe overlying a region of

an overheated vapor, has not been explored at this time

and the stability features of such a configuration are not

known. We expect that some of these features should be

similar to the liquid-dominated case. For example, we

should expect the onset of a natural convection mecha-

nism for the vapor underlying the two-phase region, as

well as a gravitational instability due to the two-phase

region above being heavier (although only by a small

amount) than the underlying vapor. In the context of

other problems involving phase change in porous media,

for example in steam injection processes for the recovery

of heavy oil, condensation of steam at an advancing

steam front is less destabilizing, than in non-condensing

flows, due to the associated volume reduction. Con-

versely, the vaporization of liquid is more destabilizing,

due to the associated volume expansion. The effect of the

phase-transition at the heat pipe interface is unclear, just

as it has been unclear for liquid-dominated heat pipes

[10].

In this paper, we study the linear stability of vapor-

dominated heat pipes by following a linear stability

approach, similar to the LD case by Ramesh and Tor-

rance [1,10]. In addition to the base state configuration,

other differences exist between our approach and that of

Ramesh and Torrance. We consider an infinitely long

two-phase zone (heat pipe), as there are no compelling

reasons to restrict the two-phase region to a given

length. This difference applies also between our work

and that of Pestov [7]. The stability analysis is done

using analytical methods, which allow for an asymptotic

treatment of the problem. As a first approximation, the

compressibility of the vapor is not considered, except in

driving the natural convection. As reported in [18], a
separate analysis that fully accounts for the vapor

compressibility did not produce substantial differences.

The paper is organized as follows: First, we present a

dimensionless formulation of the base state, discuss the

properties of the vapor-dominated solution and provide

a linearized stability analysis. Results and implications

are subsequently discussed. For completeness, the cor-

responding liquid-dominated configuration is also de-

scribed.
2. Mathematical formulation

Consider the porous medium configuration shown in

the schematic of Fig. 2a. Due to the application of a heat

flux, a dry-out region of thickness H , consisting of a

superheated vapor of almost constant pressure, P �
v ,

ultimately develop at steady-state. Due to heat conduc-

tion, this region is of a finite extent, and underlies a two-

phase (vapor–liquid) region of (almost) infinite extent.

Under stable conditions, the boundary between the two

regions is a planar interface, at the saturation tempera-

ture T �
sat corresponding to the saturation pressure, P �

v .

Before the onset of convective instabilities, the two-

phase region (heat pipe) corresponds to the 1-D vapor-

dominated branch of the solution of Eq. (1), assuming

that x < xmax. At base state conditions, the heat trans-

port is solely by conduction in the vapor zone and by

convection in the two-phase zone (vertical counterflow).

The temperature profile in the vapor zone is linear due

to conductive heat transfer and constant, at the satura-

tion temperature, within the two-phase zone. If con-

vective instability develops, heat transfer in both regions

becomes convective. To describe the onset of instability

we will first describe the mathematical formulation, then

the base state, and finally we will proceed with its sta-

bility analysis.
2.1. Governing equations

In the following, in addition to the standard contin-

uum assumptions, the following additional assumptions

will be made:

1. The porous medium is uniform, isotropic, fully satu-

rated with fluid, and has constant properties.

2. A conventional multi-phase Darcy description ap-

plies.

3. Capillary effects are neglected (see, however, Stubos

et al. [6]).

4. The compressibility of the vapor is negligible, except

in the buoyancy term, which constitutes a Boussinesq

type approximation (see also below).

5. Heat conduction in the two-phase region is negligible,

which is thus isothermal at the saturation tempera-
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ture of the interface between the vapor and two-phase

regions, and of practically infinite extent.

6. The relative permeabilities are linear functions of the

liquid saturation.

In the following, asterisks will denote dimensional

quantities, and subscripts v, l, and r will represent vapor,

liquid, and rock, respectively. The vertical coordinate y
points upwards. Based on the above, the following mass,

momentum and energy balances can be formulated.

Vapor zone

oð/q�
vÞ

ot�
þ r� � ðv�vq�

vÞ ¼ 0 ð3Þ

v�v ¼ � k
lv

ðr�p� � q�
vgÞ ð4Þ

/q�
v

ohv
ot�

þ ð1� /Þq�
r

ohr
ot�

þ q�
vv

�
v � r�hv ¼ ker�2T � ð5Þ

where / is porosity, q denotes density and v is velocity

and ke is the effective thermal conductivity of the porous

medium. Since / and q�
v are constant, this further gives:

r� � ðv�vÞ ¼ 0 ð6Þ

The enthalpy of the superheated vapor hv is given by:

hv ¼ hvs þ Dhs ¼ hvs þ CpvðT � � T �
satÞ ð7Þ

Two-phase zone

The corresponding total mass, momentum and en-

ergy balances read

o

ot�
ð/q�

vsv þ /q�
l slÞ þ r� � ðv�vq�

v þ v�l q
�
l Þ ¼ 0 ð8Þ

v�v ¼ � kkrv
lv

ðr�p� � q�
vgÞ ð9Þ

v�l ¼ � kkrl
ll

ðr�p� � q�
l gÞ ð10Þ

o

ot�
ð/ðq�

vhvsv þ q�
l hlslÞ þ ð1� /Þq�

rhrÞ

þ r� � ðq�
l v

�
l hl þ q�

vv
�
vhvÞ ¼ ker�2T � ð11Þ

where s denotes saturation of a fluid phase, namely the

volumetric fraction of the pore volume occupied by that

phase, and krl and krv are taken to be linear functions of

the liquid-phase saturation as previously noted, krl ¼ sl
and krv ¼ 1� sl. In the above, we have neglected capil-

lary effects. The two regions are further coupled with the

following boundary and interface conditions.

Boundary and interface conditions

The bottom boundary is impermeable

vv � n ¼ 0 ð12Þ
where n is the unit normal vector, and at constant

temperature

T � ¼ T �
b ð13Þ

At the interface between the vapor zone and the two-

phase zone (y ¼ H ) the temperature is at its saturation

value

T � ¼ T �
sat ð14Þ

while continuity of mass, energy and momentum leads

to the following:

ðq�
vv

�
v þ q�

l v
�
l Þ

þ � n� ðq�
vv

�
v þ q�

l v
�
l Þ

� � n
¼ ð/q�

vsv
�

þ /q�
l slÞ

þ � ð/q�
vsv þ /q�

l slÞ
�� � v�i � n ð15Þ

ðq�
l v

�
l hl þ q�

vv
�
vhv � ker�T �Þþ � n� ðq�

l v
�
l hl þ q�

vv
�
vhv

� ker�T �Þ� � n
¼ /ðq�

vhvsv
�

þ q�
l hlslÞ

þ � /ðq�
vhvsv þ q�

l hlslÞ
��
v�i � n

ð16Þ

p�þ ¼ p�� ð17Þ

where v�i is the velocity of the interface, and superscripts

+ and ) indicate two-phase and vapor zones. Finally,

the top of the heat pipe region (at y ¼ yt ! 1) is im-

permeable

ð�qqvv
�
v þ v�l Þ � n ¼ 0 ð18Þ

where we defined the density ratio �qqv �
q�v
q�
l

.

To proceed further, we will recast the equations in

dimensionless form (where asterisks are removed), by

using the characteristic variables H 2=av, H , mvav=kq�
vr for

time, length and pressure, where we introduced the

vapor thermal diffusivity

av ¼
ke

q�
vCpv

and defining the dimensionless temperature

T ¼ T � � T �
sat

T �
b � T �

sat

We then, obtain the dimensionless governing equations:

Vapor zone

r � ðvvÞ ¼ 0 ð19Þ

vv ¼ �rp þ RaT j ð20Þ

b1

oT
ot

þ vv � rT ¼ r2T ð21Þ

where j is the upwards pointing unit vector,

Two-phase zone

b2

os
ot

þr � ð�qqvvv þ vlÞ ¼ 0 ð22Þ
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vl ¼ � krl
�llv

rp
�

þ Ra2/
1

�qqv

j

�
ð23Þ

vv ¼ �krvrp ð24Þ

�/
os
ot

þr � ðvvÞ ¼ 0 ð25Þ

where, we defined the single-phase Rayleigh number

Ra ¼ kHgbvðT �
b � T �

satÞ
avmv

the two-phase Rayleigh number

Ra2/ ¼ kHgð1� �qqvÞ
avmv

the ratio of heat capacities of vapor and rock

b1 ¼
/qvCpv þ ð1� /ÞqrCpr

qvCpv

the ratio of liquid and vapor viscosities,

�llv ¼
ll

lv

the dimensionless latent heat

k ¼ Lv

CpvðT �
b � T �

satÞ

and the parameter b2 ¼ /ð1� �qqvÞ. The above are ac-

companied by the interface conditions

½ðvþl þ �qqvv
þ
v Þ � �qqvv

�
v � ½/sð1� �qqvÞ�vi� � n ¼ 0 ð26Þ

½kðvþv � v�v Þ þ ð/skÞvi þrT��n ¼ 0 ð27Þ

Pþ ¼ P�

Tþ ¼ T� ¼ 0

�
ð28Þ

by the impermeability to mass at the bottom of the

vapor zone (y ¼ 0) and at the top of the heat pipe

(y ! 1) and by a constant temperature condition,

T ¼ 1, at y ¼ 0. In the above, bracketed quantities in-

dicates the quantity evaluated across the discontinuity,

and superscripts + and ) indicate two-phase and vapor

zones, respectively.
3. Stability analysis

Subsequently, we carried out a linear stability anal-

ysis by assuming that all dependent variables are per-

turbed in the transverse direction, x, and seeking the

rates of growth of these disturbances in terms of normal

modes. For this, the base state (subscript 0) must first be

calculated. It consists of a stagnant, dry-out vapor re-

gion of dimensionless thickness 1, where heat transfer is

only by conduction,
dp�0
dy

¼ RaT0 ð29Þ

T0 ¼ 1� y ð30Þ

above which lies an infinite two-phase region, where

steady-state counterflow occurs,

dpþ0
dy

¼ � �1

kkrv
ð31Þ

wl0 ¼ � �qqv

k
and wv0 ¼ � 1

k
ð32Þ

T0 ¼ 0 ð33Þ

s ¼ s0 ð34Þ

where we defined the mass flux vector wi ¼ qivi. The

base state is then perturbed using normal modes.
3.1. The eigenvalue problem

To find the eigenvalue problem we take disturbances

of the form

T ¼ T0 þ ehðyÞ expðijxþ rtÞ
p ¼ p0 þ epðyÞ expðijxþ rtÞ
s ¼ s0 þ eRðyÞ expðijxþ rtÞ
d ¼ 1þ eD expðijxþ rtÞ

ð35Þ

where e is a small parameter, h, p, R, and D are the ei-

genfunctions of temperature, pressure, saturation and

interface location, respectively, and j and r denote the

wave number and the rate of growth of the disturbance.

These expansions are then substituted in the governing

equations and the boundary conditions, and the system

is linearized. The process is detailed, but straightfor-

ward. For simplicity, we will present here only the final

results, which read as follows:

(a) Vapor region (denoted by superscript � where ap-

propriate) (0 < y < 1)

j2p� þ Ra
dh
dy

� d2p�

dy2
¼ 0 ð36Þ

ðb1r� Raþ j2Þhþ dp�

dy
� d2h

dy2
¼ 0 ð37Þ

(b) Two-phase region (denoted by superscript þ where

appropriate) (1 < y < 1)

j2pþ þ /r�llv

krl0
R� 1

krl0

dpþ0
dy

�
þ Ra2/

�qqv

�
dR
dy

� d2pþ

dy2
¼ 0

ð38Þ

j2pþ � /r
krv0

Rþ 1

krv0

dpþ0
dy

dR
dy

� d2pþ

dy2
¼ 0 ð39Þ
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The differential equations in these regions are to be

solved subject to the following boundary conditions:

constant temperature and zero vapor flux at y ¼ 0,

h ¼ 0
dp�

dy ¼ 0

�
ð40Þ

continuity of mass, energy, temperature and pressure at

the interface y ¼ 1,
Fr ¼

tanhðr1Þ tanhðr2Þ 1 0

n1 n2 �1
kkrv

�1
r1n1 tanhðr1Þ r2n2 tanhðr2Þ Raþ b1r1 c1j

r1 1
k þ n1 tanhðr1Þ

	 

r2 1

k þ n2 tanhðr2Þ
	 


Ra� b1rf krvj

2
664

3
775 if j2 þ b1rPRa ð44Þ

Fi ¼

tanhðr1Þ sinðr3Þ 1 0

n1 n3 �1
kkrv

�1

r1n1 tanhðr1Þ r3n4 Raþ b1r1 c1j
r1 1

k þ r1n1 tanhðr1Þ
	 


r3n4 þ r3 cosðr3Þ
k Ra� b1rf krvj

2
664

3
775 if j2 þ b1r < Ra ð45Þ
h¼D

p��pþþ D
kkrv0

¼ 0

ð�qqvRaÞhþðc1rÞDþ 1

�llv

dpþ0
dy

��
þRa2/

�qqv

�
�dpþ0

dy
�qqv

�
R

þ krl0
�llv

�
þ �qqvkrv0

�
dpþ

dy
� �qqv

dp�

dy
¼ 0

ðkRaÞh�ðc2rÞD� k
dpþ0
dy

� �
R�dh

dy
�k

dp�

dy
þkkrv0

dpþ

dy
¼ 0

ð41Þ

and no-flux conditions for the vapor and liquid at

y ¼ 1,

�krv0
dpþ

dy
þ dpþ0

dy
R ¼ 0

� krl0
�llv

dpþ

dy
� 1

�llv

dpþ0
dy

þ Ra2/
�qqv

� �
R ¼ 0

8>><
>>:

ð42Þ

where c1 and c2 were defined as

c1 ¼ /ð1� �qqvÞs0
c2 ¼ /ks0

�
ð43Þ

The above equations constitute a fifth-order homoge-

neous, linear system. We seek the solution for the rate of

growth r as a function of the wave number j and the

various dimensionless parameters, among which key

roles are played by the Rayleigh numbers and parameter

x. The solution of the system can be found analytically

or numerically, and both approaches will be presented

here. The analytical solution assists us to better under-

stand and investigate the asymptotic behavior of the

system. It also serves to verify the results of the more

flexible numerical approach.
3.2. Analytical solution

Because we have neglected the compressibility of the

vapor, the saturation disturbance in the two-phase zone

turns out to be zero (in contrast to Pestov [7]). Then, and

after several calculations, one can show that the solution

of the eigenvalue problem reduces to finding the roots of

the determinant of a fourth-order matrix, defined as

follows:
where the various parameters depend on the wave

number, the Rayleigh number and other variables as

follows:
r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j2 þ b1rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1rÞ

2 þ 4j2Ra
q
2

vuut
;

r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j2 þ b1r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1rÞ

2 þ 4j2Ra
q
2

vuut
;

r3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2j2 � b1rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1rÞ

2 þ 4j2Ra
q
2

vuut
;

n1 ¼ r1 �
b1r� Raþ j2

r1
;

n2 ¼ r2 �
b1r� Raþ j2

r2
;

n3 ¼ r3

�
þ b1r� Raþ j2

r3

�
cosðr3Þ;

n4 ¼ � r3

�
þ b1r� Raþ j2

r3

�
sinðr3Þ;

1 ¼ /ð1� �qqvÞs0
�qqvb1

; f ¼ /s0
b1

; c1 ¼
krl0
�qqv�llv

þ krv0
It is not difficult to show that the growth constant enters

in the combination r� ¼ b1r, and it in this notation that

will be reported below.

Vanishing of the determinant of this matrix gives the

solution for the rate of growth. The solution procedure

is iterative because of the non-linearity of the problem,

and for this reason it is done numerically. Direct ana-

lytical results are possible in certain cases, however. For
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example, in the small wave number limit, j � 1, one

finds after several calculations the following result:ffiffiffiffiffiffiffiffiffi
�r�

p
tan

ffiffiffiffiffiffiffiffiffi
�r�

p	 

� 1

This equation admits infinitely many solutions, the

largest of which is r� ¼ �p2=4. This prediction will be

verified in the numerical results shown below. Con-

versely, the asymptotic behavior at large wave numbers

is

r� 	 �ðconstÞj2

where the positive constant is a function of various pa-

rameters. It follows that the system is stable at long and

short wavelengths, and conditionally unstable at inter-

mediate values. As discussed in detail below, there exists

a critical Rayleigh number, Racrit, above which the sys-

tem is unstable in an intermediate range of wave num-

bers.

3.3. Numerical solution

The system of differential equations (36)–(39) can

also be written as a system of first-order ordinary dif-

ferential equations

dXv

dy
¼ MvXv ð46Þ

dX2p

dy
¼ M2pX2p ð47Þ

where

Xv ¼

dp�

dy
dh
dy

p�

h

2
66664

3
77775; X2p ¼

dpþ

dy

pþ

R

2
64

3
75

and Mv and M2p are the following matrices:

Mv ¼

0 Ra j2 0

1 0 0 b1r� Raþ j2

1 0 0 0

0 1 0 0

2
6664

3
7775;

M2p ¼
0 j2 A6

1 0 0

0 0 A5

2
64

3
75 ð48Þ

The various coefficients are defined in [18]. The bound-

ary conditions are also recast in matrix form, for ex-

ample,

At y ¼ 0 : BC1 
 Xv ¼ 0 ð49Þ

where, matrix BC1 is

BC1 ¼
1 0 0 0

0 0 0 1

� �
ð50Þ
and likewise for the other boundary conditions (matrices

BC2 and BC3, respectively, see [18]). The shooting

method described in Davey [19] was used to solve the

boundary value problem. For given values of Ra, x, r,
and j, the equations are integrated from y ¼ 0 to 1 in the

vapor region and from y ¼ 1 to 1 in the two-phase

region. Initial conditions are orthonormal vectors given

by the columns of an identity matrix of the same di-

mension. The characteristic equation for stability is then

obtained as the determinant of the following 14
 14

matrix:

FnðRa;x; r; jÞ ¼ 0

where

Fn ¼ det

BC1 0 0 0

Bv �I 0 0
0 BC2 0

0 0 B2p �I

0 0 0 BC3

2
66664

3
77775 ð51Þ

Using both the analytical and the numerical solutions,

results obtained are discussed and analyzed in the fol-

lowing section.
4. Results

Fig. 3 shows typical results for the dependence of

r� ¼ rb1 on j at a constant heat flux and for a Rayleigh

number greater than the critical. As predicted analyti-

cally, for small and large wave numbers the system is

stable. The intercept at zero wave numbers equals �p2=4
as predicted analytically. A window of unstable wave

numbers exists for Rayleigh numbers larger than a

critical value. As in the LD case, stability at large

wavelengths (small j) is associated with viscous flow,

and at small wavelengths with heat conduction. The

behavior is qualitatively similar, although here the

problem corresponds to the VD case, to the boiling

configuration of Ramesh and Torrance [9]. Instability is

the result of two effects: (i) Single-phase natural con-

vection in the vapor region, and (ii) the gravitational

instability due to the heavier heat pipe zone overlying

the lighter vapor zone. In the remainder of this section

we will analyze the sensitivity of the results to the vari-

ous parameters, such as the Rayleigh number and x,
which contains the dimensionless heat flux.

Fig. 4 is a plot of the r�–j relation for different Ra
values at a constant x. As expected, the system becomes

more unstable as the Rayleigh number increases, re-

flecting the destabilization mostly associated with single-

phase natural convection. This behavior is very similar

to single-phase convection. To isolate the effect of x, we
consider the behavior at a fixed Rayleigh number. The

results, shown in Fig. 5, are similar to the previous.
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However, the configuration is found to be more unsta-

ble, as x increases. This is primarily a reflection of the

gravitational instability, due to the heavier heat pipe

overlying the lighter vapor zone. Recall that as x in-

creases, the liquid saturation in the two-phase zone in-

creases (see also Fig. 1), hence the density contrast

increases, resulting in an increase of the tendency for

gravitational instability. The figure illustrates the fact

that the effect of x is non-trivial, as it also affects the

base state.

The critical Rayleigh number, Racrit, is a function of

the various parameters of the problem, and in particular

x. Fig. 6 shows a plot of Racrit versus x assuming a
constant latent heat. We find that Racrit increases as x
decreases, as the system becomes more stable at a lower

applied heat flux. The critical value approaches a limit-

ing value close to about 14, at x ¼ 0. The range of

values for Racrit in this problem is considerably smaller

than that corresponding to either single-phase natural

convection or to the liquid-dominated problem treated

by Ramesh and Torrance [10] (see also below). The de-

pendence of the critical Rayleigh number on x is a

manifestation of the coupling of the heat pipe region

with the underlying vapor as well as of the effect of the

heat flux in setting the saturation of the heat pipe, and

thus the density difference between the two regions. The
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effect of x on the stability is further discussed below.

The effect of the phase change process, and specifically

the sensitivity of the results to the latent heat (denoted

in the figure as LV ), is shown in Fig. 7, assuming a
constant Rayleigh number. We remark that in order to

keep a constant Rayleigh number, as the latent heat

varies, requires that x varies in inverse proportion, and

the same is true for the velocity of vapor and liquid in
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the two-phase zone. In essence, therefore, this figure

reflects the same sensitivity as Fig. 5, which examined

the variation of x. The problem becomes more stable as

the latent heat increases, reflecting the higher energy

requirements to sustain a destabilizing heat pipe above

the vapor region as the latent heat is larger.
4.1. Comparison between vapor-dominated and liquid-

dominated heat pipes

A different perspective to our problem can be ob-

tained by comparing the VD case (Fig. 2a) to the LD

case (Fig. 2b), where the heat pipe underlies a liquid

zone. To obtain a valid comparison between these two

cases, we used the same analytical approach, subject to

similar boundary conditions as in the vapor-dominated

case. Governing equations, boundary conditions and

dimensionless parameters for this problem can be found

in [18]. The approach is straightforward and will not be

repeated. We note that a similar problem was solved by

Ramesh and Torrance [1], although our assumptions

and configurations are slightly different (for example, we

have considered an infinite heat pipe zone, and have also

obtained analytical solutions). As previously, small and

large j behaviors are identical to the VD case. Namely,

in the small wave number limit, j � 1, we have

ffiffiffiffiffiffiffiffiffiffiffi
�b3r

p
tan

ffiffiffiffiffiffiffiffiffiffiffi
�b3r

p� �
� 1

where, now,
b3 ¼
/qlCpl þ ð1� /ÞqrCpr

qlCpl

while at large wave numbers

b3r 	 �ðconstÞj2

The relevant growth parameter r� is now defined as b3r.
It follows that the small wave number intercept is still

the same, r� ¼ �p2=4.
Fig. 8 shows a comparison between the two cases for

the same Rayleigh number and the same value of x. It is
clear that, compared to the VD case, the LD case is

unstable at larger wavelengths. The rates of growth r are

of the same order of magnitude, if one notes that the

vertical axis in Fig. 8 corresponds to b1r in the VD case

and to b3r in the LD case, and also that b3 � b1. In fact,

conversion to this quantity shows that the rate of growth

in the LD case is larger than that of the VD case. One

important difference between the two cases is the rela-

tively weak dependence on x in the LD case. The rela-

tion between Racrit and x for different values of the latent

heat is shown in Fig. 9. We note the weaker dependence

of the critical value on x in the LD case, compared to

that of the VD case. The trends are also in the opposite

direction. Since the two-phase Rayleigh number de-

creases as x increases, it can be presumed that the

liquid-dominated case is less sensitive than in the vapor-

dominated case. However, in the limit x ! 0, the two

cases approach the same value for Racrit, corresponding
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to single-phase conditions, as expected. The difference

between our results in that limit with the conventional

value of 4p2 [15] is due to the different boundary con-

ditions used here.
The present predictions of heat pipe instability, when

the Rayleigh number is sufficiently large, have been ex-

perimentally confirmed in a qualitative sense, by the

experiments of Kneafsey and Pruess [17] in the VD case
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and by Bau and Torrance [9] and Sondergeld and Tur-

cotte [20] in the LD (boiling) case. In these works, sig-

nificant convective effects were observed when the

applied heat flux increased. It is difficult to compare

quantitatively our predictions with the experimental

findings, as the experimental configuration is more in-

tricate than in the theoretical assumptions (for example

in Kneafsey and Pruess [17] the heat flux at the bottom is

applied non-uniformly, the heat pipe developing is not

infinite, the system contains heat losses, etc.). We also

note that our predictions are not identical to those of

Pestov [7]. The latter work analyzes a conceptually dif-

ferent problem, namely one in which the two-phase zone

is uncoupled from the vapor zone. While presenting a

thorough analysis of the two-phase zone, Pestov’s work

does not really pertain to the present, where the insta-

bility is driven by gravity due to the density contrast

between the two regimes (heat pipe and vapor).

Our theory predicts the onset of instability in the VD

case, when the critical Rayleigh number is of the order

of about 1 (see Fig. 6). This means that such configu-

rations are intrinsically more unstable than predicted by

single-phase convection alone, namely under otherwise

identical conditions, convective instability can develop

in reservoirs of permeability of an order of magnitude

smaller than for the onset of single-phase convection.

The particular permeability values at which instability

sets in depend not only on physical parameters (such as

density and viscosity) but also on the applied heat flux

(namely x), as well as the thickness of the superheated

zone H . This can be readily seen by recasting the Ray-

leigh number in the form

Ra ¼ kHg
avmv

� �2 xbvLvDq
q�
vCpv

Vapor compressibility has not been considered up to this

point. In order to determine its effect, the entire problem

was reformulated and solved by taking into account this

parameter. This effort is not being presented here for the

sake of brevity, but details can be found in [18]. It was

found that in the range of parameters used, the effect of

compressibility was not significant, thus it could be

safely neglected.
5. Conclusions

In this paper, we studied the linear stability of a two-

phase heat pipe zone (vapor–liquid counterflow) in a

porous medium, overlying a superheated vapor zone. It

was found that the problem has similarities with the li-

quid-dominated case, in that long and short waves are

stable, but intermediate wavelengths can be unstable,

depending on the parameter values. A critical Rayleigh

number was identified and shown to be different than in
natural convection under single-phase conditions in two

respects: The critical value is significantly smaller, while

it also depends on other parameters of the problem,

specifically the heat flux, which controls the base state.

The dependence to the latter was found to be consider-

ably stronger in the vapor-dominated case compared to

the liquid-dominated case, where the effect was minimal.

The results find applications to geothermal systems, to

enhanced oil recovery, as well as to the conditions of the

proposed Yucca Mountain nuclear waste repository.
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